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Abstract

In the past centuries, there was no problem or fault in misleading names for same

definitions or similar methods due to lack of access to information such as journals

and internet.

Unfortunately, one of the serious challenges in Mathematics is the originality of the

new definitions and methods presented in recent decades. With a little research and

accuracy in some of them, it can be shown that some of these definitions and meth-

ods are not new. I will illustrate in this talk that there are similarities to the classical

methods or some other exiting methods.
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1 Fractional Derivative and Fractional Integral

Mathematics is the art of giving things misleading names. [15]

The beautiful and at first look mysterious - name the fractional calculus is just one of the

those misnomers which are the essence of mathematics.

For example, we know such names as natural numbers N and real numbers R. We use

them very often: let us think for a moment about these names. The notion of a natural

number is a natural abstraction, but is the number itself natural? The notion of a real

number is a generalization of the notion of a natural number. The word real emphasizes

that we pretend that they reflect real quantities. The real numbers do reflect real quanti-

ties. but this cannot change the fact that they do not exist.

Everything is in order in mathematical analysis, and the notion of a real number makes

it easier, but if one wants to compute something, he immediately discovers for himself

that there is no place for real numbers in the real world; nowadays, computations are

performed mostly on digital computers, which can work only with finite sets of finite

fractions, which serve as approximations to unreal real numbers.

1.1 Brief History

Fractional calculus deals with generalizations of the ordinary differentiation and inte-

gration to non-integer (real/complex) orders. This subject is as old as the calculus of

differentiation and goes back to the times of Leibniz, Gauss, and Newton.

f (x) = xn ⇒ f ′(x) = nxn−1, f ′′(x) = n(n − 1)xn−2, · · · , f (n)(x) = n!

The first reported attempts to generalize derivatives to fractional order is contained in

the correspondence of Leibniz (1695) with L’Hôpital [9]. In a letter to L‘Hôpital in 1695

Leibniz raised the following question: ”Can the meaning of derivatives with integer or-

der be generalized to derivatives with non-integer orders?” The story goes that L’Hôpital

was somewhat curious about that question and replied by another question to Leibniz.

”What if the order will be 1/2?” Leibniz in a letter dated September 30, 1695 replied: ”It

will lead to a paradox, from which one day useful consequences will be drawn.” In these
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Figure 1: Guillaume l’Hôpital (1661-1704) and Gottfried Wilhelm Leibniz (1646-1716)

words fractional calculus was born. Following L’Hôpital’s and Leibniz’s first inquisi-

tion, fractional calculus was primarily a study reserved for the best minds in mathematics.

Fourier, Euler, Laplace are among the many that dabbled with fractional calculus and the

mathematical consequences [11]. Mathematicians like Abel, Gauss, Fourier, Grünwald,

Riemann, Liouville, Weyl, Letnikov etc. made major contributions to the subject of frac-

tional calculus. Abel was the first person who applied fractional derivative for solving a

generalized version of the tautochrone problem. He solved the following integral equation

for α = −1
2 ,

k =

∫ x

0
(x − t)α f (t)dt, (1.1)

where f (t) is unknown. For determining f , Abel wrote the right hand side of the Eq.(1.1)

as
√
π
[

d−1/2 f (x)
dx−1/2

]
and applied d−1/2 f (x)

dx−1/2 on both sides of Eq.(1.1) to obtain:

d1/2k
dx1/2 =

√
π f (x),

as the fractional operators (under suitable conditions on f ) have the property:

d1/2

dx1/2

[
d−1/2 f (x)

dx−1/2

]
=

d0 f (x)
dx0 = f (x).

This is a remarkable achievement of Abel, which gave impetus to the development of

fractional calculus. He further applied the theory of fractional calculus and applied it

successfully to problems in potential theory [9]. Many definitions that fit the concept

of a non-integer order integral or derivative exist in the literature. The most famous of

these definitions in the world of fractional calculus are the Riemann-Liouville, Grunwald-

Letnikov, Caputo, Nishimoto, Modified Riemann-Liouville and more recently Caputo-

Fabrizio definitions.
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This subject has gained importance and popularity during the past three decades or so,

due mainly to its demonstrated applications in numerous and seemingly diverse fields of

science and engineering [6, 26]. It indeed provides several potentially useful tools for

solving differential and integral equations. Most of the mathematical theory applicable

to the study of fractional calculus was developed prior to the turn of the 20th century.

However it is in the past 100 years that the most intriguing leaps in engineering and

scientific application have been found.

1.2 Applications

There are many fields of applications where we can use the fractional calculus, such as:

Viscoelasticity, Control theory, Heat conduction, Electricity, Mechanics, Chaos, Frac-

tals and so on. Recently Maxwell’s equations have been generalized using fractional

derivatives to better understand multipole moments [4, 5]. Riewe [16, 17] has formulated

Lagrangian and Hamiltonian mechanics involving fractional derivatives which leads to

equations of motion with non-conservative forces such as friction. Further, Agrawal [1]

has developed calculus of variations including fractional order derivatives. Many struc-

tures found in nature can be modelled by fractals [8, 19]. Fractals are often so irregular

that methods of ordinary calculus are either inapplicable or ineffective. Fractional cal-

culus has proved effective in formulating processes involving fractal structures and phe-

nomenon [3, 12, 24]. Fractional calculus is also being applied to statistics [13, 14].

I did
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An analytical model for simulating the water table profile between two parallel subsur-

faces was derived by solving the linear fractional Boussinesq equation for one-dimensional

transient flow toward subsurface drains. The developed model is a generalization of

GloverDumms mathematical model. The proposed model is applicable for both homoge-

neous and heterogeneous soils.

In the classical Boussinesq equation, the scale effects are shown as scale-dependent

changes in hydraulic characteristics (e.g. hydraulic conductivity, specific yield). Unlike

the classical Boussinesq equation, due to the non-locality property of fractional deriva-

tives, the hydraulic characteristics of the fractional Boussinesq equation are constant and

scale-invariant. The second distinction is that the fractional Boussinesq equation has two

various fractional orders of differentiation with respect to x and y that indicate the degree

of heterogeneity in the x and y directions, respectively.
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1.3 Basic Definitions

1.3.1 The Mittag-Leffler function

The Mittag-Leffler function is an important function that finds widespread use in the field

of fractional calculus. It is a generalization of the exponential function. Just as the expo-

nential function naturally arises in the solution of integer order differential equations, the

Mittag-Leffler function plays analogous role in the solution of non-integer order differen-

tial equations. The standard definition of the Mittag-Leffler function [26] is

Eα(z) =

∞∑
k=0

zk

Γ(α k + 1)
, α > 0. (1.2)

The exponential function corresponds to α = 1 in the expression (1.2). In figure (2)

illustrates the Mittag-Leffler function for α = 1, 1.5, 2, 5.

Figure 2: Mittag-Leffler Function

A two-parameter Mittag-Leffler function is defined by the series expansion [26]

Eα,β(z) =

∞∑
k=0

zk

Γ(α k + β)
, (α > 0, β > 0). (1.3)

Multivariate Mittag-Leffler function [7, 26] is defined below.

E(α1,··· ,αn),β(z1, z2, · · · , zn+1) =

∞∑
k=0

∑
l1+···+ln+1=k

l j≥0

(k; l1, · · · , ln+1)



n+1∏
j=1

zl
j

Γ(β +

n+1∑
j=1

β jl j)


.
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1.3.2 Leibniz Rule for differentiating an integral

For differentiation of the integral
∫ h(x)

f (x)
G(x, t) dt with respect to x, we apply the useful

Leibnitz rule given by [46]:

d
dx

∫ h(x)

f (x)
G(x, t) dt = G(x, h(x))

dh(x)
dx

−G(x, f (x))
d f (x)

dx
+

∫ h(x)

f (x)

∂G(x, t)
∂x

dt, (1.4)

where G(x, t) and ∂G(x,t)
∂x are continuous functions in the domain D in the xt-plane that

contains the rectangular region �, a ≤ x ≤ b, t0 ≤ t ≤ t1 and the limits of integration f (x)

and h(x) are defined functions having continuous derivative for a < x < b.

1.4 Grünwald-Letnikov’s ’Differintegral’

Let f (x) ∈ C[a, b]. The first order derivative of the function f (x) is defined as

f ′(x) =
d f
dx

= D(1) f (x) = lim
h→ 0

f (x + h) − f (x)
h

, if it exists. (1.5)

Applying this definition twice we can find the second-order derivative

f
′′

(x) = lim
h→ 0

f (x + 2h) − 2 f (x + h) + f (x)
h2 .

By induction,

f (n)(x) = D(n) f (x) = lim
h→ 0

1
hn

n∑
m=0

(−1)r

(
n
m

)
f (x − mh), (1.6)

where
(
n
m

)
=

Γ(n + 1)
m! Γ(n − m + 1)

. Expression (1.6) can be generalized for non-integer values

of n. For positive values of n it represents fractional derivative and for negative values it

represents fractional integral. Let us now consider the following expression where α is

non-integer.

G
t Dα

a f (x) = lim
h→ 0

1
hα

t−a
h∑

m=0

(−1)m

(
α

m

)
f (x − mh), α > 0, (1.7)

where
(
α

m

)
=

Γ(α + 1)
m! Γ(α − m + 1)

and t and a are the upper and lower limits of differentiate-

tion, respectively. Equation (1.7) is called Grünwald-Letnikov (GL) derivative.
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Example 1.1

GDα
aeax = lim

h→0
h−α

α∑
m=0

(−1)n

(
α

m

)
ea(x+(α−n)h) = eax lim

h→0
h−α

α∑
m=0

(−1)n

(
α

m

)
(eah)α−n

= eax lim
h→0

h−α(eah − 1)α = aα eax.

The GL derivative can be extended to include negative values of α, using generalized

binomial coefficients. Generalized binomial coefficient is defined as:(
−α

m

)
= (−1)m Γ(α + m)

Γ(α) m!
, α > 0. (1.8)

Using (1.8) we can now extend (1.7) for negative orders, i.e.

GD−αa f (x) = lim
h→ 0

hα
t−a
h∑

m=0

(−1)m Γ(α + m)
m! Γ(α)

f (x − mh), (1.9)

which is called GL fractional integral.

Example 1.2

Let us consider several particular cases.

For p = 1 we have:

D−1 f (x) = lim
n→∞
h→0

h
n∑

m=0

Γ(m + 1)
m!Γ(1)

f (x − mh) = lim
n→∞
h→0

n∑
m=0

h f (x − mh)

= lim
n→∞
h→0

∫ nh

0
f (x − t)dt = lim

n→∞
h→0

∫ x

x−nh
f (t)dt =

∫ x

a
f (t)dt, h =

x − a
n

,

Using induction, we get the following general expression:

GD−p
a f (t) = lim

n→∞
h→0

hp
n∑

m=0

Γ(m + p)
m!Γ(p)

f (t − mh) =
1

(p − 1)!

∫ t

a
(t − τ)p−1 f (τ)dτ. (1.10)

1.5 Riemann-Liouville Fractional Integral/Derivative

Riemann-Liouville fractional integral operator is a direct generalization of the Cauchy’s

formula for an n-fold integral.

Definition 1.1 Cauchy’s formula for an n-fold integral is given by [44]∫ x

a
dx1

∫ x1

a
dx2 . . .

∫ xn

a
f (xn)dxn =

1
(n − 1)!

∫ x

a
(x − t)n−1 f (t)dt. (1.11)
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Formula (2.36) is very valuable and enables the calculations to work. Furthermore, this

formula will be used to convert the initial value problems to Volterra integral equations.

Definition 1.2 If f (x) ∈ C[a, b] and α > 0 then

Iαa+ f (x) :=
1

Γ(α)

∫ x

a

f (t)
(x − t)1−αdt, x > a, (1.12)

Iαb− f (x) :=
1

Γ(α)

∫ b

x

f (t)
(x − t)1−αdt, x < b,

are called as the left sided and the right sided Riemann-Liouville fractional integral of

order α, respectively.

The definition of Riemann-Liouville fractional derivative of order α is motivated by Abel’s

integral equation for any α ∈ (0, 1). Consider the integral equation:

f (x) =
1

Γ(α)

∫ x

a

φ(t)
(x − t)1−αdt, x > 0. (1.13)

By solving Eq.(1.13) we get

φ(x) =
1

Γ(1 − α)
d
dx

∫ x

a

f (t)
(x − t)α

dt. (1.14)

Thus solution of Eq.(1.13) is given by (1.14) for α ∈ (0, 1). As Eq.(1.13) is the integral of

order α, it is natural to define the inversion (1.14) as derivative of order α. The definition

of the Riemann-Liouville fractional derivative for arbitrary value of α > 0, is

Definition 1.3 Let n − 1 < α ≤ n then the left sided and right sided Riemann-Liouville

fractional derivatives of order α are defined as:

�
α
a+ f (x) :=

1
Γ(1 − α)

dn

dxn

∫ x

a

f (t)
(x − t)α+1−n dt = DnIn−α

a+ f (x), x > a, (1.15)

�
α
b− f (x) :=

1
Γ(1 − α)

dn

dxn

∫ b

x

f (t)
(x − t)α+1−n dt = DnIn−α

b− f (x), x < b,

respectively, whenever the RHS exist.

In further discussion, unless mentioned otherwise, we denote �α
a+ f (x) by �α

a f (x) and

Iαa+ f (x) by Iαa f (x), respectively. Also �α f (x) and Iα f (x), refer to �α
0+ f (x) and Iα0+ f (x),

respectively.
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Property 1.1 For any f ∈ C[a, b] the R-L fractional integral satisfies

Iαa Iβa f (x) = Iβa Iαa f (x) = Iα+β
a f (x). (1.16)

�
α
a Iαa f (x) = f (x). (1.17)

Iαa�
α
a f (x) = f (x) −

n−1∑
k=0

[�α−k f (x)]x=a
(x − a)α−k

Γ(α − k + 1)
. (1.18)

In particular if
[
�α−k f (x)

]
x=a

= 0 for k = 0, 1, · · · , n − 1, we have Iαa Dα
a f (x) = f (x).

Below we present some fractional integrals.

f (x) Iαa f (x) Specifications

C c
Γ(α+1) (x − a)α α ∈ �, a ∈ �

(x − a)β Γ(β+1)
Γ(α+β+1) (x − a)α+β α > 0, Re(β) > −1

ebx b−αebx a = −∞, α > 0, Re(b) > 0

1.6 Caputo Fractional Derivative

Although the R-L definition of fractional derivatives seems to play an important role in the

development of fractional calculus, several authors including Caputo (1967, 1969) real-

ized that the R-L definition needs revision because the applied problems in viscoelaticity,

solid mechanics and in rheology require physically interpretable initial conditions such as

f (0), f ′(0), f
′′

(0).

Caputo reformulated the ’classic’ definition of the Riemann-Liouville fractional deriva-

Figure 3: Michael Caputo

tive in order to use integer order initial conditions to solve his fractional order differential

equations [26].
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Definition 1.4 Let f ∈ Cn[a, b] and n − 1 < α < n then

Dα
a f (x) = In−αDn f (x) =

1
Γ(α − n)

∫ x

a

f (n)(t)
(x − t)(α−n+1) dt, a < x < b, (1.19)

is called as Caputo fractional derivative.

Properties

(i) Dα
aC = 0, C is a constant. (1.20)

(ii) lim
α→n

cDα
a f (x) = f (n)(x). (1.21)

(iii) Dα
a Dm f (x) = Dα+m

a f (x), n − 1 < α < n ,m ∈ �. (1.22)

Thus for α −→ n the Caputo fractional derivative becomes the ordinary nth order deriva-

tive of the function.

Relation between Riemann-Liouville and Caputo fractional derivatives

Theorem 1.1 Let f ∈ Cn[a, b] and n− 1 < α < n. then the R-L and the Caputo fractional

derivatives are connected by the relation

�
α
a f (x) = Dα

a f (x) +

n−1∑
k=0

f (k)(a+)
Γ(1 + k − α)

(x − a)k−α. (1.23)

12



From above theorem we get the follow result:

i) If α = n ∈ �, then �α
a f (x) = Dα

a f (x) = Dn f (x).

ii) If f (k)(a) = 0 for k = 0, 1, · · · , n − 1, then �α
a f (x) = Dα

a f (x).

iii) If 0 < α < 1, then �α
a f (x) = Dα

a f (x) +
f (a)

Γ(1 − α)
(x − a)−α.

Theorem 1.2 Let f ∈ Cn[a, b] and n − 1 < α < n then

Iαa Dα
a f (x) = f (x) −

n−1∑
k=0

f (k)(a+)
k!

(x − a)k, x ≥ a. (1.24)

1.7 Nishimoto Fractional Differintegration

Nishimoto defines the fractional derivative as follows [10, 11]

Definition 1.5 let C = {C−,C+},D = {D−,D+} where C− be a curve along the cut joining

two points z and −∞ + iIm(z),C+ be a curve along the cut joining two points z and ∞ +

iIm(z),D− be a domain surrounded by C−, D+ be a domain surrounded by C+ and f = f (z)

be a regular function in D. Then the fractional differintegration of any arbitrary order ν

for f (z) is defined as follows,

fν(z) =
Γ(ν + 1)

2πi

∫
C

f (ξ)
(ξ − z)1+ν

dξ (1.25)

( f )−m = lim
ν→−m

( f )ν, (m ∈ �+), (1.26)

where

−π ≤ arg(ξ − z) ≤ π for C−, 0 ≤ arg(ξ − z) ≤ 2pifor C+, (1.27)

ξ , z, z ∈ �, v ∈ �, (1.28)

fν(z) is the fractional differ-integration of arbitrary order ν with respect to z when ν > 0

or the fractional integral of order −ν when ν < 0 if |( f )v| < ∞.
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1.8 Modified Riemann-Liouville derivative

Jumarie defined modified Riemann-Liouville derivatives of order α and some important

properties as following [23]:

Dα
x f (x) =


1

Γ(1−α)

∫ x

0
(x − ξ)−α−1[ f (ξ) − f (0)], α < 0,

1
Γ(1−α)

d
dx

∫ x

0
(x − ξ)−α[ f (ξ) − f (0)], 0 < α < 1,

[ f (α−n)(x)](n), n ≤ α < n + 1, n ≥ 1.

(1.29)

Dα
x xγ =

Γ(γ + 1)
Γ(γ − α + 1)

xγ−α, γ > 0, (1.30)

Dα
x [ f (x)g(x)] = g(x)Dα

x f (x) + f (x)Dα
x g(x), (1.31)

Dα
x f [g(x)] = f ′g[g(x)]Dα

x g(x) = Dα
g f [g(x)](g′x)

α, (1.32)

Counterexample

Let f (x) = x2 and g(x) = x2 then in view of (1.30) and (1.31) we have

Dα
x [ f (x)g(x)] = Dα

x [x4] =
Γ(5)

Γ(5 − α)
x4−α

g(x)Dα
x f (x) + f (x)Dα

x g(x) = 2x2Dα
x x2 = 2x2 Γ(3)

Γ(3 − α)
x2−α =

2Γ(3)
Γ(3 − α)

x4−α

It means Dα
x [ f (x)g(x)],g(x)Dα

x f (x) + f (x)Dα
x g(x).

1.9 Caputo-Fabrizio fractional derivative

The new fractional derivative was defined as follow: [?, 21, 22].

Definition 1.6 Let 0 < κ < 1. The Caputo-Fabrizio fractional derivative of a function

ξ(x) ∈ H1(a, b), b > a is defined as follows [?]

CF Dκ
t ξ(t) =

M(κ)
(1 − κ)

∫ t

a
ξ′(τ) exp(−

κ(t − τ)
1 − κ

)dτ. (1.33)

In the above definition, M(κ) is a normalization function. CF Dκξ(t) is zero when ξ(x) is

constant, as usual Caputo derivative but for t = τ there is no singularity in kernel like the

usual Caputo derivative.

Later Losada and Nieto [21] present the anti-derivative the above derivative as follows:
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Definition 1.7 [21] Let κ ∈ (0, 1). The the Caputo-Fabrizio fractional integral associ-

ated is defined as:

CFIκt ξ(t) =
2(1 − κ)

(2 − κ)M(κ)
ξ(t) +

2κ
(2 − κ)M(κ)

∫ t

0
ξ(τ)dτ. (1.34)

Remark 1.1 Losada and Nieto calculated the normalized function M(κ) by using to the

above definition [21] which is

M(κ) =
2

2 − κ
, 0 < κ < 1.

Hence, they proposed that the definition (1.6) can be rewritten as [21]

CF Dκ
t ξ(t) =

1
1 − κ

∫ t

a
ξ′(τ) exp(−

κ(t − τ)
1 − κ

)dτ.

Theorem 1.3 Let 0 < κ < 1, then for every ξ(t) we have

CF Iκ
(

NCDκ
t ξ(t)

)
= ξ(t) − ξ(0). (1.35)

1.10 Atangana-Baleanu Derivative

Definition 1.8 Let 0 < α < 1. The Atangana-Baleanu fractional derivative of a function

f (x) ∈ H1(a, b), b > a in Caputo sense is defined as follows

ABCDα
t f (t) =

M(α)
(1 − α)

∫ t

a
f ′(τ)Eα

[
−
α(t − τ)α

1 − α

]
dτ. (1.36)

Definition 1.9 Let 0 < α < 1. The Atangana-Baleanu fractional derivative of a func-

tion f (x) ∈ H1(a, b), b > a and not necessary differentiable then, the definition of the

AtanganaBaleanu fractional derivative in RiemannLiouville sense is defined as follows

ABRDα
t f (t) =

M(α)
(1 − α)

d
dt

∫ t

a
f (τ)Eα

[
−
α(t − τ)α

1 − α

]
dτ. (1.37)

After reviewing the definition of two differential operators which have been recently in-

troduced by Caputo and Fabrizio and, separately, by Atangana and Baleanu, we present an

argument for which these two integro-differential operators can be understood as simple

realizations of a much broader class of fractional operators, i.e. the theory of Prabhakar

fractional integrals. Furthermore, we also provide a series expansion of the Prabhakar

15



Figure 4: Andrea Giusti

integral in terms of Riemann–Liouville integrals of variable order. Then, by using this

last result we finally argue that the operator introduced by Caputo and Fabrizio cannot be

regarded as fractional. Besides, we also observe that the one suggested by Atangana and

Baleanu is indeed fractional, but it is ultimately related to the ordinary RiemannLiouville

and Caputo fractional operators.

1.11 Local fractional calculus

The idea of local fractional calculus, which was first suggested by Kolwankar and

Gangal [24] based on the Riemann-Liouville fractional derivative [25,26], was employed

to deal with non-differentiable problems in science and engineering [28]. Yang et al.

[27–31] presented the logical generalizations of the definitions to the subject of local

derivative on fractals.

Definition 1.10 Let f (x) ∈ Cα(a, b). Local fractional derivative of f (x) of order α at

16



x = x0 is defined as, [27–31],

f (α)(x0) =
dα f (x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α( f (x) − f (x0))
(x − x0)α

, 0 < α ≤ 1, (1.38)

where ∆α( f (x) − f (x0)) � Γ(α + 1)( f (x) − f (x0)).

Suppose that for any point x ∈ (a, b) there exists f (α)(x) =
dα f (x)

dxα = Dα
x f (x) In this case,

Dα
x (a, b) is called a α-local fractional derivative set and f (x) ∈ Dα

x (a, b). Local fractional

derivative meets the following simple rules, [27–31],

Dα
x c = 0, Dα

x [c f ] = cDα
x f , Dα

x xβ =
Γ(1 + β)

Γ(1 + β − α)
xβ−α, β ≥ α > 0, (1.39)

and the following simple chain rules

Dkα
x f (x) =

k times︷        ︸︸        ︷
Dα

x Dα
x · · ·D

α
x f (x), Dα

x
[
( f o g)(x)

]
=

(dg
dx

)α
Dα

x f (g(x)). (1.40)

Definition 1.11 Let f (x) ∈ Cα(a, b). Local fractional integral of f (x) of order α in the

interval [a, b] is given by, [27–31],

aI(α)
b f (x) =

1
Γ(α + 1)

∫ b

a
f (x)(dx)α =

1
Γ(α + 1)

lim
∆x→0

N−1∑
j=0

f (x j)(∆x j)α, 0 < α ≤ 1,

(1.41)

where ∆x j = x j+1 − x j, ∆x = max{∆x1,∆x2, · · · ,∆x j}, and [x j, x j+1], j = 0, 1, · · · ,N − 1,

x0 = a, xN = b, is a partition of the interval [a, b].

Suppose that for any point x ∈ (a, b) there exists aIαx f (x). In this case, Iαx (a, b) is called

a α-local fractional integral set and f (x) ∈ Iαx (a, b).

proved that the conformable fractional derivative, the alternative and M-fractional deriva-

tives, the local fractional derivative of Kolwankar and Gangal, the CaputoFabrizio frac-

tional derivatives with exponential kernels cannot be considered as fractional derivatives

of non-integer orders and all results obtained for this type of operators can be derived by

using differential operators of integer orders. This means that all results obtained for these

operators can be derived by using the differential operators with integer orders. There-

fore, the proposed operators do not give anything new at least in spaces of differentiable

functions except for the change of notations.
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2 New Methods or New Names

In the past centuries, there was no problem or fault in misleading naming for a definition

or method because of no communication. For example we use the following triangle to

remember the coefficient of (a + b)n.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

which is called Pascal’s Triangle, Khayym’s Triangle or Yang Hui’s Triangle.

The triangle was studied by B. Pascal, although it had been described centuries earlier

by Chinese mathematician Yanghui (about 500 years earlier, in fact) and the Persian

astronomer-poet Omar Khayym.

But nowadays we saw still people use different name for a same technique or made a little

changes in existing method and give new name!!

I want to discuss about few of them which is related to my research and publications:

During these four decades several analytical and semi analytical methods introduced

for solving nonlinear differential equations such as:
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Figure 5: Blaise Pascal (1623-1662), Yang Hui(1238 - 1298), Omar Khayyam (1048-

1131)

i) The Adomian decomposition method (ADM)

ii) The Homotopy perturbation method (HPM)

iii) The Variational iteration method (VIM)

iv) The Homotopy analysis method (HAM)

v) The Differential transform method (DTM)

vi) The modified variational iteration method (MVIM) or

The variational homotopy perturbation method (VHPM)

Prof. G. Adomian Prof. J. H. He Prof. Sh. J. Liao
Also

i) The tanh Method

ii) (G′
G )-expansion Method

iii) The Simplest equation Method

iv) sin− cos method
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2.1 The SAM, VIM, ADM, HPM, VHPM

In this section, we briefly recall the ADM, the HPM and the VHPM for solving nonlinear

differential equations.

The successive approximations method (SAM) is one of the well know classical meth-

ods for solving integral equations [44]. It is also called the Picard iteration method in the

literature. In fact, this method provides a scheme that one can use for solving integral

equations or initial value problems. One starts by finding successive approximations to

the solution by writing an initial guess, called the zeroth approximation, which is any

selective real-valued function that one uses in a recurrence relation to determine the other

approximations [44].

The variational iteration method was first proposed by He [20] and has been used by

many authors over a number of years G. Adomian introduced a decomposition method

which is called after that as the Adomian Decomposition Method

J. H. He developed the variational iteration and homotopy perturbation methods for solv-

ing linear, nonlinear, initial and boundary value problems.

Consider the following nonlinear differential equation:

L[u(t)] + R[u(t)] + N[u(t)] = g(t), t > 0, (2.1)

subject to the initial conditions,

u(k)(0) = ck, k = 0, 1, 2, · · · ,m − 1. (2.2)

L =
dm

dtm ,m ∈ IN is a linear operator, R[u(t)] (residual linear term),

We want to obtain a solution u of (2.1) in Hilbert Space.

If (2.1) has not a unique solution, then these methods give only a solution among other

possible solutions.
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2.1.1 Successive approximations method for solving Eq. (2.1)

The successive approximations method considers the approximate solution of an integral

equation a sequence usually converging to the accurate solution [44]. For solving equation

(2.1) using SAM we apply L−1[.], which is

L−1[.] =
1

(n − 1)!

∫ t

0
(t − τ)n−1[.]dτ, (2.3)

on both sides of (2.1) so that we have

u(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[u(t)]) − L−1(N[u(t)]). (2.4)

The SAM consists of representing the solution of (2.4) as a sequence

{un(x)}∞n=0 . (2.5)

The method introduces the recurrence relation

un+1(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[un(t)]) − L−1(N[un(t)]), (2.6)

where the zeroth approximation u0(x) is an arbitrary real function. Several successive

approximations un, n ≥ 1 will be determined as

u1(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[u0(t)]) − L−1(N[u0(t)]),

u2(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[u1(t)]) − L−1(N[u1(t)]),

... (2.7)

un+1(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[un(t)]) − L−1(N[un(t)]),

and the solution computed as:

u(x) = lim
n−→∞

un(x) (2.8)

The SAM is very simple in its principles. The difficulties consist in proving the con-

vergence of the introduced series. For convergence of this method we refer the reader

to [38].
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2.1.2 Variation Iteration Method for solving Eq. (2.1)

We now briefly describe the VIM. For solving (2.1) using VIM, first according to the He’s

variational iteration method [20], we construct a correction functional for (2.1) as follows

un+1(t) = un(t) +

∫ t

0
λ(τ) {Lun(τ) + Rũn(τ) + Nũn(τ) − g(τ)dτ} , n ≥ 0 (2.9)

where λ is a general Lagrange’s multiplier, which can be identified optimally via varia-

tional theory and ũn is a restricted value that means it behaves as a constant, hence δũn = 0,

where δ is the variational derivative. Here, we apply restricted variations to nonlinear term

Nu.In this case we can easily determine the Lagrange multiplier.

Taking the variation of (2.9) with respect to the independent variable un we find

δun+1(t) = δun(t) + δ

∫ t

0
λ(τ)(Lun(τ))dτ.

Integration by parts is usually used for the determination of the Lagrange multiplier λ(τ).

In general, when Run(τ) = 0 or we consider Run(τ) as a nonlinear term we have [45]

λ =
(−1)m

(m − 1)!
(τ − t)(m−1) (2.10)

Substituting (2.10) in (2.9), where the restrictions should be omitted, yields the approxi-

mate solution

un+1(t) = un(t) +

∫ t

0

(−1)m

(m − 1)!
(τ − t)(m−1) {Lun(τ) + Run(τ) + Nun(τ) − g(τ)} dτ. (2.11)

The success of the method depends on the proper selection of the initial approximation

u0. Like SAM the solution of (2.1) will be calculate as

u(x) = lim
n−→∞

un(x) (2.12)

This means that the correction functional (2.9) gives several approximations, which in

turn means that the exact solution can be obtained as the limit of the resulting successive

approximations.

2.1.3 Comparison between SAM and VIM for solving Eq. (2.1)

In this section we prove that the SAM and the VIM give same solution for solving non-

linear differential equations and that these methods are in fact equivalent.
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Theorem 2.1 The VIM method for solving equation (2.3) is the SAM with the Lagrange

multiplier λ given by (2.10).

Proof. First we prove that

∫ t

0
λ(τ)[.]dτ = −L−1[.], (2.13)

where L−1[.] is defined with (2.3).

In view of (2.56), we have∫ t

0
λ(τ)[.]dτ =

∫ t

0

(−1)m

(m − 1)!
(τ − t)m−1[.]dτ (2.14)

=

∫ t

0

(−1)m

(m − 1)!
(−1)m−1(t − τ)m−1[.]dτ

= −

∫ t

0

1
(m − 1)!

(t − τ)m−1[.]dτ = −L−1[.], m = 0, 1, 2, . . . .

Substituting (2.14) in (2.11), we have

un+1 = un(t) − L−1 {Lun(τ) + Run(τ) + Nun(τ) − g(τ)} . (2.15)

Using (2.54) we can rewrite (2.15) as

un+1 = un(t) − un(t) +

m−1∑
k=0

u(k)(0)
tk

k!
+ L−1(g(t)) − L−1(R[un(t)])L−1(N[un(t)])

=

m−1∑
k=0

u(k)(0)
tk

k!
+ L−1(g(τ)) − L−1(R[un(t)] − L−1(N[un(t)]) (2.16)

The proof of Theorem 2.1 is completed.

2.1.4 The ADM for solving Eq. (2.1)

The method was developed from the 1970s to the 1990s by George Adomian, chair of the

Center for Applied Mathematics at the University of Georgia.

For solving equation (2.1) using the ADM , we apply L−1[.] = 1
(m−1)!

∫ t

0
(t − τ)m−1[.]dτ on

both side of (2.1). Thus

u(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[u(t)]) − L−1(N[u(t)]), t > 0 (2.17)
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The ADM consists the solution of (2.55) as an infinite series

u(x) =

∞∑
i=0

ui(x), (2.18)

and N(u(x)) is also decomposed as

N(u(x)) =

∞∑
i=0

Ai, (2.19)

where An, n = 1, 2, 3, · · · are called the Adomian polynomials which are calculated by

[33, 34, 44]

An =
1
n!

dn

dpn [N(
n∑

i=0

ui pi)]|p=0. (2.20)

Here p is a parameter introduced for convenience. Upon substituting (2.18) and (2.19)

into (2.55) yields

∞∑
i=0

ui(t) =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)) − L−1(R[

∞∑
i=0

ui(t)]) − L−1(
∞∑

i=0

Ai). (2.21)

In view of the convergence of the series in(2.21), the components of series (2.18) are

computed by following formula:

u0 =

m−1∑
k=0

ck
tk

k!
+ L−1(g(t)), (2.22)

un+1 = −L−1(R[un]) − L−1(An), n = 0, 1, 2, · · ·
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When the independent variable(time)is unbounded,the series solution (2.18) will diverge

from the true solution at larger values of time. This is where the discretization of time

axis makes itself indispensable. An estimate of local error over a particular time interval

is given by Errorl =
∑∞

i=n+1 ui ≡ O(δhn). The global error order is one integral order

less than the corresponding local error order. It is Errorl ≡ O(δhn−1). So it may achieve

more accurate solution and get higher rate convergence by increasing the number of series

terms [47, 48]. For convergence of this method we refer to [33, 34, 47].

2.1.5 The HPM for solving Eq. (2.1)

The Homotopy perturbation method, first proposed by J.H. He in 1998. The HPM was

developed by combining two techniques: the standard homotopy and the perturbation.

For solving (2.1) according to the He’s HPM [36], we first construct a homotopy as

H(ν; p) = (1 − p)[L(ν) − L(u0)] + p[L(ν) + R(ν) + N(ν) − g(t)] = 0, (2.23)

or

H(ν; p) = L(ν) − L(u0) + pL(u0) + p[R(ν) + N(ν) − g(t)] = 0, (2.24)

where p ∈ [0, 1] and u0 is an initial guess of (2.1), which satisfies (2.54). In the HPM, a

power series of p

ν = ν0 + ν1 p + ν2 p2 + · · · , (2.25)

is considered as the solution of(2.24). Substituting p = 1 in (2.23), it gives our original

equation (2.1). Also when p tends to 1 in (2.25) we have

u(t) = lim
p→1

ν = ν0 + ν1 + ν2 + · · · . (2.26)

Like the ADM, N(ν) is decomposed as

N(ν) =

∞∑
i=0

piHi = H0 + pH1 + p2H2 + · · · , (2.27)

where Hn is calculated as

Hn(ν0, ν1, ν2, · · · , νn) =
1
n!

∂n

∂pn (N(
n∑

i=0

piνi))|p=0, n = 0, 1, 2, · · · (2.28)
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it called by few authors as He’s polynomials!

Substituting (2.25) and (2.27) into (2.23) or (2.24) and arranging it according to the pow-

ers of p, we have

p0 : L(ν0) − L(u0) = 0, (2.29)

p1 : L(ν1) + L(u0) + R(ν0) + H0 − g(t) = 0,

p2 : L(ν2) + R(ν1) + H1 = 0, ν2
(k)(0) = 0, k = 0, 1, 2, · · · ,m − 1

...

pn : L(νn) + R(νn−1) + Hn−1 = 0, νn
(k)(0) = 0, n = 2, 3, · · ·

By solving the above equations (2.29), we obtain the components νi, i = 0, 1, 2, · · · of

(2.25). For convergence of this method we refer to [36].

We have proved that He’s polynomials is only the Adomian polynomials [39].

2.1.6 The VHPM for solving Eq. (2.1)

Now we briefly describe an alternative approach of VIM which is called MVIM [43] or

VHPM [41, 42]. This method is proposed by the coupling of the VIM and the HPM.

The modified variational iteration method (MVIM) is same with exciting method

which is called variational homotopy perturbation method (VHPM) [35, 41, 42] For solv-
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ing (2.1) using the VHPM, first according to the VIM [37,38], a correction functional for

(2.1) is constructed as

un+1(t) = un(t) +

∫ t

0
λ(τ){Lun(τ) + R

∼
un(τ) + N

∼
un(τ) − g(τ)}dτ, n ≥ 0, (2.30)

where λ is a general Lagrangian multiplier, which can be identified optimally via varia-

tional theory.

In general [45] we have

λ =
(−1)m

(m − 1)!
(τ − t)(m−1). (2.31)

After finding the value of λ, unlike the VIM and similar to the HPM, we decompose the

solution of (2.1) as a following series

ν = ν0 + ν1 p + ν2 p2 + · · · , (2.32)

substituting p = 1 in (2.32), yields the approximate solution of (2.30). Also, the nonlinear

term is written as N(ν) =
∞∑

i=0
Hi pi. Now, similar to the HPM, we have

∞∑
n=0

νn pn = u0 + p
∫ t

0
λ(τ)[R(

∞∑
n=0

νn pn) + N(
∞∑

n=0

νn pn) − g(τ)]dτ, (2.33)

Finally by sorting coefficients with respect to powers of p, we have

p0 : ν0 = u0 (2.34)

p1 : ν1 =

∫ t

0
λ(τ)[R(ν0) + H0(ν0) − g(τ)]dτ,

p2 : ν2 =

∫ t

0
λ(τ)[R(ν1) + H1(ν0, ν1)]dτ,

...

pn : νn =

∫ t

0
λ(τ)[R(νn−1) + Hn−1(ν0, ν1, · · · , νn−1)]dτ.

which is called the VHPM using He’s polynomials!! For the selective zeroth approxima-

tion ν0 we used the initial values (2.54) . In the VHPM the initial approximation ν0 has

been selected as

ν0(t) =

m−1∑
k=0

ck

k!
tk. (2.35)
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2.2 Comparison between the ADM, the HPM, and the VHPM for

solving Eq.

Those methods assumed the solution of (2.1) as a infinite series.

The components of those series will be computed by using iterative formula.

Theorem 2.2 The He’s polynomials (2.28) are the Adomian’s polynomials (2.20).

proof.see [39]
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Theorem 2.3 The HPM for solving Eq. (2.1) is equivalent the ADM when the homotopy

H(ν; p) is considered as (2.23).

proof. Applying L−1 on both side of (2.29) we have

ν0 =

m−1∑
k=0

ck

k!
tk, (2.36)

ν1 = −L−1R[ν0] − L−1H0 + L−1g(t),

ν2 = −L−1R[ν1] − L−1H1,

...

νn = −L−1R[νn−1] − L−1Hn−1.

According to Theorem 1 we have Hn = An. In view of (2.21) and (2.25) we have

lim
p→1

ν = lim
p→1

∞∑
i=0

νi pi =

m−1∑
k=0

ck

k!
tk + L−1[g(τ)] − L−1R(ν0) − L−1A0 − · · ·

= u0 + u1 + · · · =

∞∑
i=0

ui = u

~
}

| }

-

-

?
6

L−1

ADM

System of Integral Eqs.

System of Diff. Eqs.

Homotopy

u(x) =
∞∑

i=0
ui(x),Integral Eq.

N(u) =
∞∑

i=0
Ai

v(x) =
∞∑

i=0
vi(x) pi,

N(v) =
∞∑

i=0
Hi pi

L

H(v; p) = 0
HPM

L−1�

~

ODE
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Theorem 2.4 If we consider the homotopy H(ν; p) as (2.33) for the VHPM. Then the

VHPM is equivalent the ADM.

proof. Substituting (2.25) and (2.27) into (2.33), we have

H(ν; p) =

∞∑
n=0

νn pn − u0 − p
∫ t

0
λ(τ)[R(

∞∑
n=0

νn pn) + N(
∞∑

n=0

νn pn) − g(τ)]dτ = 0

⇒ ν0 − u0 + p[ν1 −

∫ t

0
λ(τ)[R(ν0) + H(ν0) − g(τ)]dτ]

−

∫ t

0
λ(τ)[R(νn) + Hn − νn+1]pn+1dτ = 0,

By arranging the above equation according to the powers of p, we have

p0 : ν0 − u0 = 0, (2.37)

p1 : ν1 −

∫ t

0
λ(τ)[R(ν0) + H0(ν0) − g(τ)]dτ = 0,

p2 : ν2 −

∫ t

0
λ(τ)[R(ν1) + H1(ν0, ν1)]dτ = 0,

...

pn+1 : νn+1 −

∫ t

0
λ(τ)[R(νn) + Hn(ν0, ν1, · · · , νn)]dτ = 0, n = 0, 1, 2, · · · .

From (2.37) we have

ν0 = u0, (2.38)

ν1 =

∫ t

0
λ(τ)[R(ν0) + H0(ν0) − g(τ)]dτ,

ν2 =

∫ t

0
λ(τ)[R(ν1) + H1(ν0, ν1)]dτ,

...

νn+1 =

∫ t

0
λ(τ)[R(νn) + Hn(ν0, ν1, · · · , νn)]dτ, n = 0, 1, 2, · · · .
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According to Theorem 1 we have Hn = An. In view of (2.31) and (2.35), substituting

(2.38) into (2.32) leads us to

ν = ν0 + ν1 p + ν2 p2 + · · · (2.39)

ν =

m−1∑
k=0

ck

k!
tk + (

∫ t

0
λ(τ)[R(ν0) + A0 − g(τ)]dτ)p

+ (
∫ t

0
λ(τ)[R(ν1) + A1]dτ)p2 + · · · ,

so

lim
p→1

ν =

m−1∑
k=0

ck

k!
tk −

∫ t

0
λ(τ)g(τ)dτ (2.40)

+ (
∫ t

0
λ(τ)[R(ν0) + A0]dτ) + (

∫ t

0
λ(τ)[R(ν1) + A1]dτ) + · · · .

In [40], the first author proves that∫ t

0
λ(τ)[.]dτ = −L−1[.]. (2.41)

Substituting (2.41) in (2.40) we have

lim
p→1

ν =

m−1∑
k=0

ck

k!
tk − L−1[g(τ)] − L−1[R(ν0) + A0] − L−1[R(ν1) + A1] + · · · ,

hence

lim
p→1

ν =

m−1∑
k=0

ck

k!
tk − L−1[g(τ)] − L−1[

∞∑
i=0

R(νi)] − L−1[
∞∑

i=0

Ai] = u.

So, we prove that lim
p→1

ν = u.. In similar way we can prove that u = lim
p→1

ν. In view of

Theorems 2 and 3 we have:

Theorem 2.5 Let λ is (2.31) and the homotopyH(ν; p) is considered by (2.33). Then the

VHPM for solving equation (2.1) is equivalent the HPM.

proof. From (2.41) we have
∫ t

0
λ(τ)[.]dτ = −L−1[.] and substituting it in (2.33) we have

∞∑
n=0

νn pn = u0 − pL−1[R(
∞∑

n=0

νn pn) + N(
∞∑

n=0

νn pn) − g(τ)], (2.42)

take limit of (2.42) when p→ 1 so we have

u = u0 + L−1(g(t)) − L−1(R[u(t)]) − L−1(N[u(t)]). (2.43)
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Eq. (2.43) equivalent Eq. (2.55). That means variational homotopy perturbation method

for equation (2.1) is same the HPM for (2.55).

Example 2.1 Consider the following type of nonlinear differential equation

u′(t) = 1 + u2(t)dt, (2.44)

u(0) = 0

here L = d
dt [.] so L−1[.] =

∫ t

0
[.]dτ

The ADM The HPM

u(t) = t +
∫ t

0
u2(x)dx H(ν; p) = v′(t) − 1 − p v2(t) = 0,

u(t) =
∑∞

i=0 ui(t), u2(x) =
∑∞

i=0 Ai v(t) =
∑∞

i=0 vi(t)pi, v2(t) =
∑∞

i=0 Hi pi

∑∞
i=0 ui(t) = t +

∫ t

0

∑∞
i=0 Aidx

∑∞
i=0 v′i(t)pi − t − p

∑∞
i=0 Hi pi = 0

u0(t) = t, p0 : v′0(t) − 1 = 0, v0(0) = 0

u1(t) =
∫ t

0
A0dx p1 : v′1(t) − H0 = 0, v1(0) = 0

...
...

un(t) =
∫ t

0
An−1dx, pn : v′n(t) − Hn−1 = 0, vn(0) = 0

AdomianPolynomials He′spolynomials

A0 = u2
0 H0 = v2

0

A1 = 2u0u1 H1 = 2v0v1

A2 = u2
1 + 2u0u2 H2 = v2

1 + 2v0v2

A3 = 2u1u2 + 2u0u3 H3 = 2v1v2 + 2v0v3

A4 = u2
2 + 2u1u3 + 2u0u4 H4 = v2

2 + 2v1v3 + 2v0v4
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The few terms of solution are:

ADM HPM

u1(t) = t3
3 v1 = t3

3

u2(t) = 2t5
15 v2 = 2t5

15

u3(t) = 17t7
315 v3 = 17t7

315

u4(t) = 62t9
2835 v4 == 62t9

2835
...

...

So

u =
∑

ui = lim
p→1

∑
vi pi = t +

t3

3
+

2t5

15
+

17t7

315
+

62t9

2835
+ · · · = tan t

u(t) = t +

∫ t

0
u2(x)dx,

To solve (2.45), by the VHPM

a correction functional for (2.44) is constructed as

un+1(t) = un(t) +

∫ t

0
λ(τ){Lun(τ) − N

∼
un(τ) − 1}dτ, n ≥ 0, (2.45)

In view of (2.31) we find λ = −1 now according to VHPM we use following homotopy
∞∑

n=0

νn pn = u0 + p
∫ t

0
(−1)[−N(

∞∑
n=0

νn pn) − 1]dτ, (2.46)

In view of initial condition we can rewrite (2.46) as
∞∑

n=0

νn pn = p(t +

∫ t

0

∞∑
n=0

Hn pn)dτ, (2.47)

Finally by sorting coefficients with respect to powers of p, we calculate νn n = 0, 1, 2, · · ·

If p → 1 in (2.47) we have the ADM and it is equivalent applying the HPM for integral

equation (2.45) .

x x xODE Integral Eq. Sol.

HPM
- -
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2.3 A brief view of tanh method, (G′
G )-expansion Method and Sim-

plest equation method

Suppose we have a nonlinear partial differential equation for u(x, t) in the form

N(u, ux, ut, uxx, utt, uxt, ...) = 0 (2.48)

where u(x, t) unknown function and dependent to x, t variables and N is a polynomial

in u(x, t) and its partial derivatives, in which the highest order derivatives and nonlinear

terms are involved. The transformation u(x, t) = u(ξ), ξ = k(x − c t) reduces Eq.(2.48) to

the ordinary differential equation (ODE) as follow:

P(u, u′, u′′, u′′′, ...) = 0. (2.49)

where u = u(ξ) and prime denotes the derivative with respect to ξ , and k and c are

constants. Exact solution of this equation can constructed as finite series

u(ξ) =

N∑
i=0

Ai Y i, AN , 0, (2.50)

where Y is tanh(m(ξ−ξ0)) in the tanh method , Y = G(ξ) is a solution of the some ordinary

differential equation referred to as the simplest equation in the simplest equation method

and Y =
G′(ξ)
G(ξ) in the (G′

G )-Expansion Method which is satisfies the following second-order
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linear ODE

G′′ + λG′ + µG = 0. (2.51)

Now u(ξ) can be determined explicitly by using the following three steps:

• Step (1). By considering the homogeneous balance between the highest nonlinear

terms and the highest order derivatives of u(ξ) in Eq.(2.49), the positive integer N

in (2.50) is determined.

• Step (2). By substituting (2.50) into (2.49) and collecting all terms with the same

powers of Y together, the left hand side of Eq.(2.49) is converted into a polynomial.

After setting each coefficient of this polynomial to zero, we obtain a set of algebraic

equations in terms of Ai (i = 0, 1, 2, ..., n) and constants of c, k (and λ, µ in the (G′
G )-

Expansion method).

• Step (3). Solving the system of algebraic equations and then substituting the results

into (2.50), gives solutions of (2.49).

2.3.1 Description of the tanh method

The tanh method for finding exact solutions of nonlinear differential equations was intro-

duced more than 20 years ago. We should note some old publications of the application

of the tanh method to look for exact solutions of nonlinear differential equations . De-

scription of the tanh method can be found in papers [54,55]. The essence of this approach

is as follows:

Let we have a partial differential equation as Eq.(2.48) and by transformation ξ = k(x−c t)

this equation is reduced to (2.49). Exact solution of this equation can constructed as finite

series

u(ξ) =

N∑
i=0

Ai tanhi(m(ξ − ξ0)) (2.52)

where N is integer , coefficients Ai and parameter m are unknown values that can be found

by using the step(1)- step(3).
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2.3.2 Description of the simplest equation method

The simplest equation method is a very powerful mathematical technique for finding ex-

act solutions of nonlinear ordinary differential equations(ODEs). It has been developed

by Kudryashov [51] and used successfully by many authors for finding exact solutions

of ODEs as well as PDEs. The first idea is to apply the simplest nonlinear differential

equations (the Riccati equation, the equation for the Jacobi elliptic faction, the equation

for the Weierstrass elliptic function and so on) that have lesser order then the equation

studied.

Let we have a partial differential equation as Eq.(2.48) and by transformation ξ =

k(x−c t) this equation is reduced to (2.49). Exact solution of this equation can constructed

as finite series

u(ξ) =

N∑
i=0

Ai (G(ξ))i (2.53)

where G(ξ) is a solution of some ordinary differential equation referred to as the sim-

plest equation, and A0, A1, A2, ..., AN are constants to be determined after substituting

(2.53) into (2.49) as same as above.

The simplest equation has two properties:

(i) The order of simplest equation is lesser than equation (2.49).

(ii) we know the general solution(s) of the simplest equation or we know at least exact

analytical particular solution(s) of the simplest equation.

The positive number N can be determined by step (1).
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2.3.3 Description of the (G′
G )-Expansion method

In this subsection we recall the basic idea of the (G′
G )-expansion method [49,50]. Same as

above, equation (2.48) by transformation ξ = k(x − c t) is reduced to (2.49).

The (G′
G )-expansion method is based on the assumption that the travelling wave solu-

tion of Eq.(2.49) can be expressed by a polynomial in (G′
G ) as:

u(ξ) =

N∑
i=0

Ai

(
G′

G

)i

, AN , 0, (2.54)

where N is integer , coefficients Ai(i = 1, 2, ...,N), λ, µ are unknown values that can be

found by using the step(1)–step(3). And G = G(ξ) satisfies the second-order linear ODE

G′′ + λG′ + µG = 0, (2.55)

here by using the general solutions of (2.55) we have

G′

G
=


√
λ2−4µ
2

(
c1 cosh

√
λ2−4µ

2 ξ+c2 sinh
√
λ2−4µ

2 ξ

c2 cosh
√
λ2−4µ

2 ξ+c1 sinh
√
λ2−4µ

2 ξ

)
− λ

2 , λ2 − 4µ > 0,
√

4µ−λ2

2

(
c1 cos

√
4µ−λ2

2 ξ−c2 sin
√

4µ−λ2
2 ξ

c2 cos
√

4µ−λ2
2 ξ+c1 sin

√
4µ−λ2

2 ξ

)
− λ

2 , λ2 − 4µ < 0,
(2.56)

and c1 and c2 are arbitrary constants.

2.4 Relations between of the tanh method, (G′
G )-expansion method and simplest

equation method

In this section we illustrate relations between these methods that sometimes these turn to

other methods. Here we prove two theorem to show these cases.

Theorem 2.6 The (G′
G )-Expansion Method is a special case of the Simplest equation

method when we use the Riccati equation as a simple equation.

Proof 1 with assuming

Y(ξ) =
G′(ξ)
G(ξ)

(2.57)

therefore Eq.(2.54) turns into:

u(ξ) =

N∑
i=0

Ai Y i(ξ), AN , 0, Ai = const. (2.58)
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with using (2.57) we have:

G′ = YG ⇒ G′′ = Y ′G + YG′ (2.59)

with using (2.55) and (2.59) we have:

Yξ = −Y2 − λY − µ (2.60)

that this is the Riccati equation, where λ and µ are constants.

Therefore (G′
G )-expansion method is equivalent with the simplest equation method when

we use the Riccati equation as the simplest equation in this method.

Theorem 2.7 If we use the Riccati or Bernoulli equations as the simplest equations in

the simplest equation method then this method is equivalent with the tanh method.

Proof 2 The solution of the Riccati equation (2.60) is

Y(ξ) =

√
µ +

λ2

4
tanh(

√
µ +

λ2

4
(ξ − ξ0)) +

λ

2
(2.61)

substituting (2.61) into (2.53) we have:

u(ξ) =

N∑
i=0

Ai{

√
µ +

λ2

4
tanh(

√
µ +

λ2

4
(ξ − ξ0)) +

λ

2
}i

=

N∑
i=0

Ai

i∑
j=0

(
i
j

)
(
λ

2
)i− j(

√
µ +

λ2

4
tanh(

√
µ +

λ2

4
(ξ − ξ0)) j (2.62)

=

N∑
i=0

bi tanhi(m(ξ − ξ0)) (2.63)

from Eq.(2.63) we can find coefficients bi and parameter m. Therefore in this case simplest

equation method is equivalent with the tanh method. Also with applying the Bernoulli

equation:

Yξ = aY(ξ) − Y2(ξ) (2.64)

the solutions of this equation are:

Y(ξ) =


a
2

[
1 + tanh( a

2 (ξ − ξ0))
]
, a > 0,

a
2

[
1 − tanh( a

2 (ξ − ξ0))
]
, a < 0,

(2.65)
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with substituting (2.65) into (2.53) we have

u(ξ) =

N∑
i=0

Ai

[a
2

(1 ± tanh(
a
2

(ξ − ξ0))
]i

=

N∑
i=0

Ai (
a
2

)i
i∑

j=0

(
i
j

)
(±1) j tanh j(

a
2

(ξ − ξ0)) (2.66)

⇒ u(ξ) =

N∑
i=0

bi tanhi(m(ξ − ξ0)) (2.67)

we can find coefficients bi and parameter m.

Therefore in this case too simplest equation method is equivalent with the tanh method.
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